Absolute risk regression for competing risks: interpretation, link functions, and prediction
نویسندگان
چکیده
منابع مشابه
Absolute risk regression for competing risks: interpretation, link functions, and prediction.
In survival analysis with competing risks, the transformation model allows different functions between the outcome and explanatory variables. However, the model's prediction accuracy and the interpretation of parameters may be sensitive to the choice of link function. We review the practical implications of different link functions for regression of the absolute risk (or cumulative incidence) o...
متن کاملThe use and interpretation of competing risks regression models.
PURPOSE Competing risks observations, in which patients are subject to a number of potential failure events, are a feature of most clinical cancer studies. With competing risks, several modeling approaches are available to evaluate the relationship of covariates to cause-specific failures. We discuss the use and interpretation of commonly used competing risks regression models. EXPERIMENTAL D...
متن کاملCompeting risks regression for clustered data.
A population average regression model is proposed to assess the marginal effects of covariates on the cumulative incidence function when there is dependence across individuals within a cluster in the competing risks setting. This method extends the Fine-Gray proportional hazards model for the subdistribution to situations, where individuals within a cluster may be correlated due to unobserved s...
متن کاملPrediction Models for Time Discrete Competing Risks
The classical approach to the modeling of discrete time competing risks consists of fitting multinomial logit models where parameters are estimated using maximum likelihood theory. Since the effects of covariates are specific to the target events, the resulting models contain a large number of parameters, even if there are only few predictor variables. Due to the large number of parameters clas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Medicine
سال: 2012
ISSN: 0277-6715
DOI: 10.1002/sim.5459